home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Visual Basic Source Code
/
Visual Basic Source Code.iso
/
vbsource
/
vbdatabs
/
crc32.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
1999-03-14
|
6KB
|
160 lines
// ------------------------------- //
// -------- Start of File -------- //
// ------------------------------- //
// ----------------------------------------------------------- //
// C++ Source Code File Name: crc32.cpp
// Compiler Used: MSVC40, DJGPP 2.7.2.1, GCC 2.7.2.1, HP CPP 10.24
// Produced By: Doug Gaer
// File Creation Date: 08/17/1998
// Date Last Modified: 03/15/1999
// ----------------------------------------------------------- //
// ------------- Program description and details ------------- //
// ----------------------------------------------------------- //
/*
THIS SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.
THE ENTIRE RISK OF THE QUALITY AND PERFORMANCE OF THIS SOFTWARE
IS WITH YOU. SHOULD ANY ELEMENT OF THIS SOFTWARE PROVE DEFECTIVE,
YOU WILL ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR, OR
CORRECTION.
The CRC32 functions (Cyclic Redundancy Check) are used to
calculate a sophisticated checksum based on the algebra of
polynomials. The Cyclic Redundancy Check, is a way to detect
bit errors that occur during data storage or transmission.
The CRC-32 algorithm operates on a block of data as a single
large numerical value. The algorithm divides this large value
by the CRC-32 polynomial or generator polynomial, leaving the
remainder 32-bit, which is the checksum.
*/
// ----------------------------------------------------------- //
#include <iomanip.h>
#include "crc32.h"
#include "crc32tab.h"
unsigned long calcCRC32(const char *buf, unsigned len)
// Calculate a 32-bit CRC for a raw pattern of bytes.
// Returns a 32-bit checksum.
{
unsigned long CRC=0xffffffffL;
unsigned int n = len;
while(n--)
CRC=crc32tab[(CRC ^ (*buf++)) & 0xFF] ^ ((CRC>>8) & 0x00ffffffL);
return CRC ^ 0xffffffffL;
}
unsigned long calcCRC32(char *buf, unsigned len)
// Calculate a 32-bit CRC for a raw pattern of bytes.
// Returns a 32-bit checksum.
{
unsigned long CRC=0xffffffffL;
unsigned int n = len;
char *p = (char *)buf;
while(n--)
CRC=crc32tab[(CRC ^ (*p++)) & 0xFF] ^ ((CRC>>8) & 0x00ffffffL);
return CRC ^ 0xffffffffL;
}
unsigned long calcCRC32(unsigned char c, unsigned long CRC)
// Calculate a 32-bit CRC table value for a single byte.
// NOTE: The initial CRC value must be set to 0xffffffffL
// and the final 32-bit value that must be XOR'ed with
// 0xffffffffL to obtain the checksum.
{
unsigned int i;
i = (unsigned int)c;
i &= 0xFF; // Reset all the bits
CRC=crc32tab[(CRC ^ i) & 0xFF] ^ ((CRC>>8) & 0x00ffffffL);
return CRC;
}
unsigned long calcCRC32(fstream &infile)
// Calculate a 32-bit CRC for a file. Assumes the stream
// is already open. Returns a 32-bit checksum.
{
unsigned long CRC=0xffffffffL;
unsigned char c;
unsigned int i;
// Rewind to the start of the stream
infile.clear();
infile.seekg(0, ios::beg);
infile.seekp(0, ios::beg);
while(!infile.eof()) {
infile.get(c);
i = (unsigned int)c;
i &= 0xFF; // Reset all the bits
if(infile.eof()) break;
CRC=crc32tab[(CRC ^ i) & 0xFF] ^ ((CRC>>8) & 0x00ffffffL);
}
return CRC ^ 0xffffffffL;
}
int makeCRC32(ostream &stream)
// Write a CRC 32 table for a byte-wise 32-bit CRC calculation
// based on the Autodin/Ethernet/ADCCP polynomial of 0x4C11DB7:
// 0000 0100 1100 0001 0001 1101 1011 0111 (binary) or a poly of
// x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7 +x^5+x^4+x^2+x^1+x^0
// In this representation the coefficient of x^0 is stored in the
// MSB of the 32-bit word and the coefficient of x^31 is stored in
// the LSB. Thus 0x4C11DB7 becomes 0xEDB88320:
// 1110 1101 1011 1000 1000 0011 0010 0000 (binary)
// Adding the polynomials is performed using an exclusive-or, and
// multiplying a polynomial by x is a right shift by one. If the
// polynomial is called "p", and each byte is represented as polynomial
// "q", with the lowest power in the most significant bit (so the byte
// 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32)
// mod "p", where "a" mod "b" means the remainder after dividing "a" by
// "b". This calculation is done using the shift-register method of
// multiplying and taking the remainder. The register is initialized
// to zero, and for each incoming bit, x^32 is added mod "p" to the
// register if the bit is a one (where x^32 mod p is p+x^32 = x^26+...+1),
// and the register is multiplied mod "p" by "x" (which is shifting right
// by one and adding x^32 mod "p" if the bit shifted out is a one.) This
// algorithm starts with the highest power (least significant bit) of "q"
// and repeats for all eight bits of "q".
{
unsigned long c; // CRC shift register
unsigned long e; // Polynomial exclusive-or pattern
int i; // Counter for all possible eight bit values
int k; // Byte being shifted into crc apparatus
// Terms of polynomial defining this crc (except x^32):
static const int p[14] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
// Make exclusive-or pattern from polynomial
e = 0;
for (i = 0; i < sizeof(p)/sizeof(int); i++)
e |= 1L << (31 - p[i]);
// Compute and print table of CRC's, five per line
stream << endl;
stream << " 0x00000000U";
for (i = 1; i < 256; i++)
{
c = 0;
for (k = i | 256; k != 1; k >>= 1)
{
c = c & 1 ? (c >> 1) ^ e : c >> 1;
if (k & 1)
c ^= e;
}
if(i % 5)
stream << ", 0x" << setfill('0') << setw(8) << hex << c << "U";
else
stream << "," << endl << " 0x" << setfill('0') << setw(8) << hex
<< c << "U";
}
stream << endl;
return 1;
}
// ----------------------------------------------------------- //
// ------------------------------- //
// --------- End of File --------- //
// ------------------------------- //